(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(x))) → lastbit(x)
conv(0) → cons(nil, 0)
conv(s(x)) → cons(conv(half(s(x))), lastbit(s(x)))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(z0))) → lastbit(z0)
conv(0) → cons(nil, 0)
conv(s(z0)) → cons(conv(half(s(z0))), lastbit(s(z0)))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(z0)) → c7(CONV(half(s(z0))), HALF(s(z0)), LASTBIT(s(z0)))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(z0)) → c7(CONV(half(s(z0))), HALF(s(z0)), LASTBIT(s(z0)))
K tuples:none
Defined Rule Symbols:
half, lastbit, conv
Defined Pair Symbols:
HALF, LASTBIT, CONV
Compound Symbols:
c2, c5, c7
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
CONV(
s(
z0)) →
c7(
CONV(
half(
s(
z0))),
HALF(
s(
z0)),
LASTBIT(
s(
z0))) by
CONV(s(0)) → c7(CONV(0), HALF(s(0)), LASTBIT(s(0)))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(z0))) → lastbit(z0)
conv(0) → cons(nil, 0)
conv(s(z0)) → cons(conv(half(s(z0))), lastbit(s(z0)))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(0)) → c7(CONV(0), HALF(s(0)), LASTBIT(s(0)))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(0)) → c7(CONV(0), HALF(s(0)), LASTBIT(s(0)))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
K tuples:none
Defined Rule Symbols:
half, lastbit, conv
Defined Pair Symbols:
HALF, LASTBIT, CONV
Compound Symbols:
c2, c5, c7
(5) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 1 of 4 dangling nodes:
CONV(s(0)) → c7(CONV(0), HALF(s(0)), LASTBIT(s(0)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(z0))) → lastbit(z0)
conv(0) → cons(nil, 0)
conv(s(z0)) → cons(conv(half(s(z0))), lastbit(s(z0)))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
K tuples:none
Defined Rule Symbols:
half, lastbit, conv
Defined Pair Symbols:
HALF, LASTBIT, CONV
Compound Symbols:
c2, c5, c7
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
We considered the (Usable) Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
And the Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(CONV(x1)) = x1
POL(HALF(x1)) = 0
POL(LASTBIT(x1)) = 0
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(half(x1)) = x1
POL(s(x1)) = [2] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(z0))) → lastbit(z0)
conv(0) → cons(nil, 0)
conv(s(z0)) → cons(conv(half(s(z0))), lastbit(s(z0)))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
S tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
K tuples:
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
Defined Rule Symbols:
half, lastbit, conv
Defined Pair Symbols:
HALF, LASTBIT, CONV
Compound Symbols:
c2, c5, c7
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
We considered the (Usable) Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
And the Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(CONV(x1)) = x12
POL(HALF(x1)) = [2]x1
POL(LASTBIT(x1)) = x1
POL(c2(x1)) = x1
POL(c5(x1)) = x1
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(half(x1)) = x1
POL(s(x1)) = [2] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
half(0) → 0
half(s(0)) → 0
half(s(s(z0))) → s(half(z0))
lastbit(0) → 0
lastbit(s(0)) → s(0)
lastbit(s(s(z0))) → lastbit(z0)
conv(0) → cons(nil, 0)
conv(s(z0)) → cons(conv(half(s(z0))), lastbit(s(z0)))
Tuples:
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
S tuples:none
K tuples:
CONV(s(s(z0))) → c7(CONV(s(half(z0))), HALF(s(s(z0))), LASTBIT(s(s(z0))))
HALF(s(s(z0))) → c2(HALF(z0))
LASTBIT(s(s(z0))) → c5(LASTBIT(z0))
Defined Rule Symbols:
half, lastbit, conv
Defined Pair Symbols:
HALF, LASTBIT, CONV
Compound Symbols:
c2, c5, c7
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))